ПРИРОДА И ЧЕЛОВЕК
На Главную Написать письмо Карта сайта
ГЛАВНАЯ
СТАТЬИ
КОНТАКТЫ
КАРТА
ПРИРОДА ДАЕТ ДОСТАТОЧНО, ЧТОБЫ
УДОВЛЕТВОРИТЬ ЕСТЕСТВЕННЫЕ ПОТРЕБНОСТИ
Сенека
ОКЕАН И АТМОСФЕРА
Океан
Атмосфера
Взаимодействие
АТМОСФЕРА
ПРОИСХОЖДЕНИЕ И СОСТАВ   (Продолжение)

В течение нескольких десятилетий синоптический прогноз был, в сущности, прогнозом изменений поля давления атмосферы. Считалось, что горизонтальное распределение давления это и есть условия погоды. Но температура воздуха, осадки, облачность связаны не только с давлением. В атмосфере все значительно сложнее. Необходима была перестройка самого метода синоптической метеорологии, его научных основ и прогностических возможностей. В 1915 г. в России возникло Военно-метеорологическое управление и Главная авиаметеорологическая станция. Да и сама метеорологическая наука уже была подготовлена к перестройке.

Развитие аэрологических наблюдений в конце XIX в., т. е. исследование верхних слоев атмосферы, привело к тому, что произошел поворот к изучению процессов в трех измерениях. Существенную роль в этом сыграли и успехи динамической метеорологии, в особенности учение о циркуляции атмосферы и об энергии атмосферных движений (В. Бьеркнес и М. Маргулес). Благодаря радиосвязи был установлен международный обмен метеорологическими сводками. Синоптические карты начали составляться для всего северного полушария, а затем и для Земного шара. Если во время первой мировой войны было несколько десятков станций, то к 40-м годам их насчитывалось уже тысячи. Сами передаваемые наблюдения стали подробнее, охватили большое число элементов. Радио стало основным средством информации о будущей погоде. Таким образом, крупнейший технический переворот в средствах связи привел к перевороту в синоптической метеорологии. Метеорологическая наука за 20 лет (1920—1940 гг.) сделала больше, чем за всю свою предшествующую историю.

Значительное развитие получила служба погоды в нашей стране. В 1930 г. был организован Центральный институт погоды, республиканские и областные центры службы погоды, синоптическая служба в аэропортах гражданской и военной авиации. Изобретение радиозонда сделало возможным появление высотных карт погоды и вертикальных разрезов. В нашей стране они систематически составляются с 1937 г. С помощью этих карт были открыты и исследованы струйные течения — узкие, но исключительно сильные потоки в верхней атмосфере и тропосфере. В 1945 г. первые полеты самолетов в тропических циклонах положили начало их подробному исследованию. Одновременно с синоптическим разрабатывался гидродинамический метод прогноза погоды — в первую очередь прогноза поля давления. В 1939—1940 гг. были предложены новые приемы для предсказания ноля давления и температуры, в частности перенос, изобар и изотерм вдоль некоторых предвычисленных траекторий, позднее развитый и усовершенствованный. Теоретически изучена система волн, возникающих в общем западном воздушном потоке. Большой вклад в гидродинамический метод прогнозов внес советский ученый И. А. Кибель.

Еще в 1925 г. советский ученый А. А. Фридман предложил уравнение переноса вихря. Оно было широко использовано во многих странах — США, Германии, Англии и др. Когда спустя два с лишним десятилетия началось широкое применение электронно-вычислительной техники, стало возможным быстро решать сложные системы уравнений динамики атмосферы, учитывать в прогнозах многие добавочные физические факторы, например влияние орографии. До сих пор мы говорили лишь о краткосрочных прогнозах погоды. Ведется также большая работа по созданию и применению методов долгосрочных прогнозов средствами гидродинамики. В последние годы как в нашей стране, так и за рубежом развиваются идеи о влиянии солнечной активности на макропроцессы погоды. Общая тенденция исследований сейчас такова, что надо искать глубокие взаимозависимости между всеми геофизическими явлениями. Надо также учитывать и роль космических факторов. Атмосфера испытывает постоянное воздействие сверху — космического пространства, снизу — земной поверхности, почвы, снежного покрова и, конечно, океанов, морей и других водоемов. Основной источник энергии атмосферы — солнечное излучение, постоянно идущее к Земле. Физическое состояние атмосферы, характеризуется величинами, называемыми метеорологическими элементами,— это температура, влажность, давление воздуха, ветер (его направление и скорость), осадки, дальность видимости, оптические, электрические явления. Сочетание нескольких метеорологических элементов порождает грозу, метель, туман, смерч, полярные сияния и др. Изучать атмосферные явления, находить их взаимосвязи призвана метеорология. В наш век дифференциации наук и метеорология разделилась на ряд отдельных отраслей, Одна из них — физика атмосферы, в которой основное внимание уделено физическому 1 механизму атмосферных процессов и явлений. Конкретно физика атмосферы изучает термодинамические процессы, состав, строение, образование облаков, туманов и др.

Разработкой методов предсказания погоды занимается синоптическая метеорология. Динамическая (теоретическая) метеорология, широко используя математический аппарат, применяет теоретический метод исследования. Наука о климате — климатология. Физика свободной атмосферы — аэрология — изучает верхние слои- атмосферы (до высот в несколько десятков километров). В последние годы возникает новая наука — аэрономия. Она обязана своим происхождением тем наблюдениям, которые производятся с помощью геофизических и метеорологических ракет, искусственных спутников Земли, пилотируемых и автоматических кораблей и межпланетных станций. Здесь речь идет уже о высотах в несколько сотен и тысяч километров. Эта наука рождается на наших глазах вместе с развитием космических исследований, и путь ее еще только начинается, хотя можно предположить, что он будет стремительным, захватывающе интересным и принесет новые открытия. Практические требования общества породили ряд важных прикладных отраслей метеорологии — таких, как авиационная метеорология, агрометеорология, биометеорология (влияние атмосферных процессов на человека н другие живые организмы), ядерная метеорология (изучение естественной и искусственной радиоактивности, распространение в атмосфере радиоактивных примесей, влияние ядерных взрывов). Радиометеорология, активно развивающаяся в последнее время, изучает распространение радиоволн в атмосфере. Можно было бы назвать еще несколько прикладных аспектов метеорологии: лесную (связанную с лесными пожарами), транспортную, строительную и др.

Что же представляет собой атмосфера — предмет изучения столь многих наук, использующих различные методы и подходы? Прежде всего, о высоте атмосферы. Ее четкой верхней границы не существует, она плавно переходит в межпланетное пространство. Плотность составляющих атмосферу газов приближается к плотности его газов. Условно принято, что граница проходит на высоте 1000—1200 км, где еще иногда наблюдаются полярные сияния. Невозможно пока -точно установить глубину (или высоту) проникновения атмосферы в космос. Наблюдения спутников над изменением плотности воздуха ^доказывают, что плотность, атмосферы приближается к плотности межпланетной среды с высот 2—3 тыс. км. Косвенные данные позволяют полагать, что внешняя часть атмосферы проникает в сильно разреженную, с температурой около 100 тыс. °С солнечную атмосферу и взаимодействуют с ней. Следы атмосферы обнаружены автоматическими межпланетными станциями на высоте более 20 тыс. км. Ученые полагают, что земная атмосфера переходит в солнечную на высоте 60—100 тыс. км. Существует явление, называемое ускользанием атмосферы. Оно состоит в том, что молекулы и атомы газов, находящиеся в постоянном движении, поднимаясь высоко вверх, реже сталкиваются друг с другом (их становится все меньше в единице объема) и могут уйти в межпланетное пространство.

Масса земной атмосферы равна приблизительно 5,27 * 1018 кг. Основная ее часть сосредоточена в относительно тонком приземном слое. Вес метеорологические элементы меняются в пространстве и наиболее сильно — по вертикали. Например, температура воздуха изменяется по вертикали в несколько сотен раз больше, чем по горизонтали. Атмосферу можно разделить на ряд слоев, или сфер. В 1962 г. Всемирная метеорологическая организация, проанализировав все имеющиеся к этому времени данные, пришли к выводу, что по характеру распределения температуры выделяется пять сфер: тропосфера (до 11 км), стратосфера (от 11 до 50—55 км), мезосфера (от 50—55 до 80 — 85 км), термосфера (от 80—85 до 800 км), экзосфера (выше 800 км). Название самого нижнего слоя атмосферы, начинающегося у земной поверхности, происходит от греческого слова «тропос», что означает «вращаться, перемешиваться». Высота тропосферы непостоянна и зависит от географической широты места, времени года, циркуляции. Граница атмосферы на одной и той же широте выше летом и ниже зимой. В умеренных широтах мощность атмосферы 9—12 км, близко к полюсам она меньше, порядка 8—10 км, к экватору больше —16—18 км. Воздух в тропосфере движется не только в горизонтальном и вертикальном направлении, но и постоянно перемешивается. Именно в тропосфере образуются облака, так как здесь сосредоточена основная масса водяного пара, выпадают осадки и происходят другие метеорологические явления. С высотой в тропосфере убывает температура — на каждые 100 м более чем на полградуса. На верхней границе тропосферы средняя годовая температура в умеренных широтах — 50—60°, над экватором — около 70е, над Северным полюсом зимой— 65°, летом 47°.

Тропосферу и стратосферу разделяет слой толщиной от нескольких метров до 1—2 км, который принято называть тропопаузой. В этой области образуются очень мощные узкие воздушные потоки со скоростями 150— 300 км/ч, так называемые струйные течения. Лежащая выше стратосфера характеризуется вначале (до высоты 35 км) очень медленным ростом температуры, а затем значительно более быстрым, и на верхней границе достигает среднегодового значения около 0°. Здесь в зависимости от сезона и высоты колебания очень значительны. В стратосфере водяного пара. уже почти нет, облака не образуются. И лишь очень редко на высоте 20—25 км возникают перламутровые облака. Долго считалось, что в отличие от тропосферы в стратосфере воздух не перемешивается, что это — весьма спокойная среда. Но радиометрические приборы и метеорологические ракеты принесли новые сведения — оказывается и здесь, в стратосфере, существует интенсивная циркуляция воздуха и вертикальные его перемещения.

Следующий за стратосферой слой — мезосфера — также отделен промежуточным — стратопаузой, который еще недостаточно полно изучен. В мезосфере температура с высотой падает до — 70—80°. Есть данные, что скорость ветра достигает здесь 150 м/с. Можно предполагать, что в мезосфере существуют интенсивные турбулентные движения. Выше находится промежуточный слой — мезопауза. В этой области наблюдаются серебристые облака. Ракетные наблюдения показывают, что на высоте 150 км температура равна примерно 220—240° К, на высоте 200 км 500°К, а на верхней границе термосферы превышает 1000°К (К — кинетическая температура газа (воздуха), определяемая движением его молекул и доступная для непосредственного измерения). В термосфере, расположенной над мезопаузой, температура с высотой возрастает. Экзосфера — сфера рассеяния — представляет собой внешний слой, постепенно переходящий в межпланетное пространство. Температура здесь еще более повышается, предположительно она равна 2000 К, газы находятся в весьма разреженном состоянии, их частицы движутся- с огромными скоростями, почти не сталкиваясь друг с другом.

Жизнь и деятельность человека развивается в самой нижней части атмосферы. Поэтому особенно важно знать, как взаимодействует атмосфера с земной поверхностью. С этой точки зрения атмосферу принято делить на нижний, пограничный слой, в пределах 1—1,5 км, и верхний, лежащий выше, называемый свободной атмосферой. В нервом существуют суточные изменения метеорологических элементов, на движение воздуха влияет трение о земную поверхность. В этом слое может быть выделен еще один, самый нижний, высотой 50—100 м. Его называют приземным слоем, потоки тепла и водяного пара в нем мало изменяются с высотой.

В горизонтальном направлении атмосфера также неоднородна. Вся тропосфера делится на обширные объемы с относительно однородными условиями, узкими полосами, где метеорологические изменения весьма резки. Обширные объемы воздуха, перемещающиеся в одном из течений, называются воздушными массами. В зависимости от того, где формировалась та или иная воздушная масса, как долго находилась она над определенной подстилающей поверхностью, зависят ее свойства. Естественно, что одни свойства рождаются в воздухе, подстилаемом льдами Арктики, н совсем другие — в тропиках. Таким образом, возникла следующая классификация воздушных масс, основанная на географических особенностях их формирования:

  1. Арктический, воздух, образовавшийся над Полярным кругом, в Арктическом бассейне и над прилежащими частями материка (АВ).
  2. Умеренный воздух, формирующийся в умеренных широтах (УВ).
  3. Тропический воздух, образующийся в тропических и субтропических шпротах (ТВ). Этот воздух формируется иногда в летнее время над континентами в южных районах умеренных широт.
  4. Экваториальный воздух — воздух экваториальной зоны, иногда переходящий из одного полушария в другое (ЭВ).

Внутри одной и той же воздушной массы метеорологические элементы меняются мало, а при переходе из одной массы в другую — резко, скачком. Переходные зоны, где метеорологические элементы в горизонтальном направлении изменяются быстро, принято называть фронтом (иногда фронтальными зонами, или фронтальными поверхностями). Когда надвигается холодный воздух и клином подтекает под отступающий и вытесняемый вверх теплый воздух, фронт называется холодным. Когда надвигается теплый воздух и постепенно натекает на отступающий холодный, речь идет о теплом фронте. Различают три главных фронта: арктический (между арктическим и умеренным воздухом), умеренных широт (между умеренным и тропическим), тропический (между тропическим и экваториальным воздухом).

Перемещения, изменения и взаимодействие воздушных масс и фронтов обусловливают изменение погоды, поэтому их изучение особенно важно при составлении прогнозов. Движение атмосферы различных масштабов и природы, физические явления и процессы, происходящие в атмосфере (излучение, нагревание и охлаждение, взаимные превращения пара, воды и льда), составляют сущность современной науки о воздушной оболочке Земли.. Но воспроизвести все сложнейшие явления в заранее заданной обстановке невозможно. Поэтому в последние годы организуются крупномасштабные натурные эксперименты. В 1972—1974. гг. был проведен Международный тропический эксперимент по изучению динамики и энергетики тропической зоны планеты, использовались современные методы наблюдений атмосферы и океана.

В состав атмосферы входят различные группы веществ. Первая — главные постоянные газы: азот, кислород, аргон. Сюда может быть отнесен и водяной пар, хотя количество его непостоянно и заметно меняется от времени и места. Далее идут малые постоянные газы: углекислота, окись углерода, метай и др. Они химически устойчивы, но существуют в атмосфере в небольших . количествах. Причисляют к данной группе озон атмосферы и нижней стратосферы — ненасыщенные и .неустойчивые молекулы, малочисленные и химически очень активные, озон верхней атмосферы. В последнюю группу входят аэрозоли — твердые и жидкие частицы, плавающие в воздухе.

Азот воздуха составляет по объему 78,08%. Он почти не участвует в поглощении энергии и превращениях вещества в атмосфере. Исключение представляют, ножа* дуй, лишь некоторые виды бактерий в почве, которые усваивают азот и выделяют в атмосферу очень небольшое количество его окиси. Преобладание азота в атмосфере объясняют его инертностью. Выделившийся в начальной стадии образования атмосферы он сохранился в ней в большем количестве, чем другие газы.

Вторая по объему (20,95%) составная часть атмосферного воздуха — кислород. Он необходим для дыхания почти всех живых организмов, горения, участвует в ре- акциях со многими другими газами. Ракетные наблюдения показали, что на больших высотах (порядка 200 км) кислород должен преобладать над азотом. О кислороде в верхней атмосфере можно судить по спектрам в полярных сияниях. Здесь под действием проникающих в атмосферу протонов и электронов, испускаемых активными областями (например, вспышками на Солнце), светятся разреженные газы и больше всего атомарный кислород. Эти частицы, сталкиваясь, возбуждают атомы и молекулы, которые затем высвечиваются. Нижний край кислородных полярных сияний расположен на высоте около 100 км, а верхний — до 700 км. 8 марта 1970 г. в Москве наблюдалось большое полярное сияние, в котором видны были зеленое и красное свечения с фиолетовыми оттенками. Аргон как тяжелый газ, по-видимому, в термосфере отсутствует. Аргон атмосферы пассивен.

Углекислый газ принимает большое участие в процессах поглощения п излучения тепла. Средняя его концентрация по объему в 1973 г. составляла 0,0324%. Надо заметить, что она непрерывно возрастает из-за сжигания топлива, лесных -пожаров и обжига цемента. Так, за время с 1890 г. эти источники давали в год около 1,4 • 109 т, а в 1971 г. уже почти 2 • 1010 т С02. Годовое увеличение углекислоты в атмосфере составляет только половину этой величины, а следовательно, другая половина должна поглощаться океаном. Но последний процесс идет медленно, и еще медленнее происходит передача углекислоты в глубинные слои, в которых уже -растворено углекислоты в 50 раз больше, чем в атмосфере. Углекислота энергично потребляется растениями как на земной поверхности, так и в океане. По оценкам некоторых ученых, из-за накопления углекислоты должно произойти повышение средней температуры воздуха приблизительно на 3°С, Большее потепление (до 11°) должно охватить полярные страны и меньшее (до 2°) — тропические, в первую очередь в южном полушарии, где площадь поглощающей поверхности океана больше. Это, однако, процесс длительный. В атмосфере есть также в небольшом количестве окись углерода, Концентрация которой особенно велика в промышленных районах. Над океаном она меньше. Водород находится в нижней атмосфере, куда попадает при промышленном загрязнении воздуха и извержении, вулканов. В земной атмосфере очень мало водорода и сравнительно мало гелия, хотя он и выделяется при радиоактивном распаде. Приход и уход гелия уравновешивается поступлением его из земной коры и ускользанием вверх. Полагают, что водород, участвовавший в образовании нашей планеты, уже почти весь потерян. Присутствие в атмосфере озона имеет очень большое значение — он защищает живые организмы от вредного, а порой и губительного влияния избытка ультрафиолетовых лучей Солнца.

В далекие геологические эпохи, когда в атмосфере Земли не было кислорода и озона, жизнь развивалась в океане, защищенном слоем воды. Водоросли понемногу выделяли кислород в атмосферу. В начале палеозойской эры его количество составляло сотую долю от современного, над земной поверхностью возник слой озона. Сотни миллионов лет на Земле преобладали лишь водоросли и грибы, затем начался бурный расцвет жизни на суше во всех ее формах. Защитная роль озона велика и в наши дни. Более 1% солнечной энергии поглощается в верхней части озона, именно поэтому такой теплый воздух (выше 0°) наблюдается в слое 40—55 км. Озон химически активен, реагирует с1 другими малыми газами атмосферы. Озон — сильно расслоенный в атмосфере газ. Высота, мощность и смешение его сильно зависят от динамических процессов атмосферы. Наблюдения над озоном дают возможность детально изучать циркуляцию атмосферы, движения фронтов.


natuerlich.ru © 2008-2015
Все права защищены
E-mail:info@natuerlich.ru
Главная    :    Статьи    :    Контакты    :    Карта сайта